• 2024-12-03

语言成为数据科学硕士

全家-嬉遊記集氣版

全家-嬉遊記集氣版

目录:

Anonim

每个人都希望自己的职业生涯有很高的需求 - 因为需求转化为高薪并且不缺工作。如今,大数据空间充满了这种就业,因为各种规模的公司都需要收集和分析信息,以便做出决策和预测(并获得结果)。

这正是数据科学家所做的:发现信息,建立联系,创建数据可视化,并帮助公司高效运营。对正确的编程语言进行全面了解对于解释统计数据和使用数据库至关重要。

据KDnuggets称,91%的数据科学家使用以下四种语言。

语言1:R

R是一种受数据挖掘者欢迎的统计导向语言。它是S的开源,面向对象的实现,并不是太难学习。

如果您想学习如何开发统计软件,R是一门很好的语言。它还允许您操作和图形显示数据。

作为他们的数据科学专业化课程的一部分,Coursera提供了一个关于R的课程,它不仅教你如何用语言编程,还讨论如何在数据科学/分析的背景下应用它。

语言2:SAS

与R一样,SAS主要用于统计分析。它是将数据库和电子表格中的数据转换为可读格式(如HTML和PDF文档)以及更直观的表格和图形的强大工具。

它最初由学术研究人员开发,已成为全球各种公司和组织中最受欢迎的分析工具之一。它更像是一种大型公司类型的软件,通常不被小型公司或个人自己使用。

学习SAS的资源列在本文档中。该语言不是开源的,因此您可能无法免费自学。

语言3:Python

尽管R和SAS最常被认为是分析领域的“两大”,但Python最近也成为了竞争者。其主要优势之一是其各种各样的库(例如Pandas,NumPy,SciPi等)和统计功能。

由于Python(如R)是一种开源语言,因此可以快速添加更新。 (使用SAS等已购买的程序,您必须等待下一个版本发布。)

另一个要考虑的因素是Python可能是最容易学习的,因为它简单易学,并且课程和资源的广泛可用性。 LearnPython网站是一个很好的起点。

您还可以找到更完整的Python学习资料列表。

语言4:SQL

到目前为止,我们一直在研究同一系列中的语言,(或多或少)具有相同的功能。 SQL代表“结构化查询语言”,它就是变化的地方。这种语言与统计数据无关;它侧重于处理关系数据库中的信息。

它是使用最广泛的数据库语言,是开源的,所以有抱负的数据科学家绝对不应该跳过它。

学习SQL应该使您能够创建SQL数据库,管理其中的数据以及使用相关的功能。 Udemy提供涵盖所有基础知识的培训课程,可以相当快速,轻松地完成。

结论

至少,您应该学习SQL并选择至少一种统计语言。但是,如果你有时间(在SAS的情况下,钱)并且想要真正达到你的市场价值,没有什么可以说你不能学到所有四个!

不要急于求成,多练习,磨练自己的技能,享受工作保障。


有趣的文章

加入前要考虑的海军生活方式事实

加入前要考虑的海军生活方式事实

海军生活方式和生活质量计划相当宽松。包括家庭住房,基地购物和服务等。

加入海军时需要考虑的事项

加入海军时需要考虑的事项

想到美国军队的职业生涯?权衡利弊,然后决定是否适合入侵海军是一个正确的选择。

你可以从参加商务会议中得到什么

你可以从参加商务会议中得到什么

参加商务会议可以为您提供终身的联系,对您的行业的新见解,面试机会以及许多其他好处。

毕业前学习的生活技能

毕业前学习的生活技能

以下是毕业前要学习的9种生活技能。你将需要在工作场所获得这些能力,并且在你还在上学的时候获得这些能力的最佳时间。

狗训练师你不知道的10件事

狗训练师你不知道的10件事

关于专业狗训练师,您可能不了解一些事情。详细了解这个非常受欢迎的职业道路。

你的员工不与你分享的11件事

你的员工不与你分享的11件事

一些管理人员不知不觉地关闭了与员工的双向沟通​​。以下是您可能听不到的11件事,您需要知道。